ULAM'S STABILITIES OF FRACTIONAL INTEGRO-DIFFERENTIAL EQUATIONS
نویسندگان
چکیده
منابع مشابه
Fractional type of flatlet oblique multiwavelet for solving fractional differential and integro-differential equations
The construction of fractional type of flatlet biorthogonal multiwavelet system is investigated in this paper. We apply this system as basis functions to solve the fractional differential and integro-differential equations. Biorthogonality and high vanishing moments of this system are two major properties which lead to the good approximation for the solutions of the given problems. Some test pr...
متن کاملSolving two-dimensional fractional integro-differential equations by Legendre wavelets
In this paper, we introduce the two-dimensional Legendre wavelets (2D-LWs), and develop them for solving a class of two-dimensional integro-differential equations (2D-IDEs) of fractional order. We also investigate convergence of the method. Finally, we give some illustrative examples to demonstrate the validity and efficiency of the method.
متن کاملSolving the fractional integro-differential equations using fractional order Jacobi polynomials
In this paper, we are intend to present a numerical algorithm for computing approximate solution of linear and nonlinear Fredholm, Volterra and Fredholm-Volterra integro-differential equations. The approximated solution is written in terms of fractional Jacobi polynomials. In this way, firstly we define Riemann-Liouville fractional operational matrix of fractional order Jacobi polynomials, the...
متن کاملfractional type of flatlet oblique multiwavelet for solving fractional differential and integro-differential equations
the construction of fractional type of flatlet biorthogonal multiwavelet system is investigated in this paper. we apply this system as basis functions to solve the fractional differential and integro-differential equations. biorthogonality and high vanishing moments of this system are two major properties which lead to the good approximation for the solutions of the given problems. some test pr...
متن کاملDiscretization of Integro-Differential Equations Modeling Dynamic Fractional Order Viscoelasticity
We study a dynamic model for viscoelastic materials based on a constitutive equation of fractional order. This results in an integrodifferential equation with a weakly singular convolution kernel. We discretize in the spatial variable by a standard Galerkin finite element method. We prove stability and regularity estimates which show how the convolution term introduces dissipation into the equa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Pure and Apllied Mathematics
سال: 2017
ISSN: 1311-8080,1314-3395
DOI: 10.12732/ijpam.v113i3.1